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ABSTRACT

Let L/K be a finite Galois p-extension of algebraic function fields of one
variable over an algebraically closed field k of characteristic p, with Ga-
lois group G = Gal(L/K). The space 0} (0) of semisimple holomorphic
differentials of L is the k-vector space of holomorphic differentials which
are fixed by the Cartier operator. We obtain the isomorphism classes and
multiplicities of the summands in a Krull-Schmidt decomposition of the
k[G]-module Q3 (0) into a direct sum of indecomposable k[G]-modules.

1. Introduction

Let L be an algebraic function field in one variable over an algebraically closed
constant field k. The space Q(0) of holomorphic differentials of L forms a
k-vector space of dimension gy, the genus of L. Let G be a finite group of
automorphisms of L/k. There is a natural action of G on 1(0). Therefore,
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Q1,(0) has structure of k[G]-module where k[G] is the group ring with coefficients
in k.

The problem of determining the k[G]-module structure of Q,(0) has been stud-
ied by many authors (see [16] for more details). In the classical case, that is, when
k is the field of complex numbers, following a suggestion of E. Hecke, Chevalley
and Weil determined completely its structure for arbitrary G. However, if k has
characteristic p > 0 this problem is still open.

An explicit determination of a k[G]-module A is one which determines the
isomorphism classes and multiplicities of the indecomposable summands in a
decomposition of A as direct sum of indecomposable k[G]-modules.

Assume now that G is a finite p-subgroup of Aut(L/k), where p is an arbi-
trary rational prime. Let K denote the field fixed by G, where k is a field of
characteristic p.

In this situation we are interested in 25 (0), the submodule of £,(0) generated
by the holomorphic differentials of L which are invariant under C, the Cartier
operator. We have that 23 (0) is isomorphic as k[G]-module to the elements of
order dividing p of the Jacobian of a smooth curve with function field L ([11],
Proposition 10). It is well-known that as k-modules 25 (0) = k™r, where 7 is
the Hasse-Witt invariant of L.

Nakajima, ([8], Theorem 2) obtained two k[G]-exact sequences which determine
implicitly the structure as k[{G]-module of Q5 (0), the first one when the extension
L/K is ramified and the second one when the extension L/K is unramified. In
the case L/K is ramified, Nakajima established the k[Gl-exact sequence 0 —
Q3(0) — k[G]""1*7x — ker (®) — 0, where 7 is the Hasse-Witt invariant of

K,
@:@«b,-, @i( Z aoo)z Z g,
1=1

0€G/G: 0€G/G;
and Gj,...,G, are the decomposition groups of the prime divisors Py,..., P,
of K ramified in L. Therefore, if L/K is ramified it follows that the implicit
structure as k[G]-module of Q3 (0} is given by

Q3 (0) 2 k[G]* & Q(ker(®))

where v is 2 nonnegative integer and 2 denotes the Heller’s loop-space operation.

We are interested in the explicit structure as k[G]-module of Q3 (0). This
structure is known when L/K is an unramified extension [16], when there exists
a fully ramified prime in the extension L/K [17] and finally when there exists a
unique maximal decomposition group and this is normal in G [17]. This problem
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has been investigated by many authors (see [8], [12], [14], [16], and [17] for more
details).

In this paper we obtain unconditionally and explicitly the Galois module struc-
ture of Q% (0) (Theorem 1). The work of A. Weiss on indecomposable modules
for finite p-groups is crucial in the proof of the main result of this paper.

2. Notation and preparatory results

In this paper p will denote an arbitrary rational prime number and G a finite
p-group.

We will denote the disjoint union of the sets X1,...,X, by Wi, Xi, N =
{1,2,3,...}, Ny := NU {0}. For an arbitrary field ¥ we have that if M is a
finitely generated k[G]-module, then M is a projective k[G]-module if and only
if M is an injective k[G]-module.

For a k[G]-module M, we denote by M% := {m € M: gm = m for all g € G}
and we define the map N: M — M by

N(m) = (Zg)m-

geG

Any non-zero k[G]-module M can be written as a direct sum M = @;_; M;
in terms of indecomposable k[G]-modules M;. By the Krull-Schmidt-Azumaya
Theorem ([3], Theorem 6.12), the components M;’s are uniquely determined up
to isomorphism.

If F is a field and X is a finite set, we set X := Ysex T € FIXI.

PROPOSITION 1: Let G be a finite p-group and Hy, ..., H, subgroups of G. We
consider the natural action of G on the set S = |);_, G/H;. Then, as k[G]-
modules,

@ kIG/Hi
(1) e

where

ke* = {( Z agy, -, Z ao,) € @k[G/Hi]: a€ k}.
o1€G/H; =1

o.€G/H,

Proof: We consider the k[G]-isomorphism

¢: D kIG/H.) - k{4 G/ Hi
=1 i=1
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given by

¢><( Y o, Y aora,«>>:§rj Y o

UlEG/Hl UTEG/HT i=1 OLEG/HI‘

Then, as k[G]-modules, @;_, k[G/H;] = k[¥;_, G/H;]. The result follows.
|

Let P be a k[G]-module. We write P = P© @ P where P© is k[G)-
injective and P() does not have injective k[G]-components. For a k[G]-exact
sequence 0 & M — Y — N — 0 with Y an injective k[G]-module, we set
Q# (M) := N and Q(N) := MY, The module Q# (M) is called the dual of
the Heller’s loop-space operation of M and Q (N) is called the Heller’s
loop-space operation of N.

PROPOSITION 2: Let k be a field and let G be a finite p-group. Let M be a
finitely generated k[G]-module such that M = M("). Then
(a) Q(Q# (M)) 2 M as k[G]-modules.
(b) Q# (U(M)) = M as k[G]-modules.
(c) If M is an indecomposable k[G]-module, then Q¥ (M) is an indecomposable
k[G]-module.
(d) Let k be of characteristic p and H < G. Then Q# (k[G/H)) is an indecom-
posable k[G]-module and

k[G]

as k[G]-modules.

Proof:  ([3], Propositions 78.4, 78.5 and {17]). 1

Let L/k be a field of algebraic functions with k a perfect field of characteristic
.
From ([4], Theorem 2.1) and ([7], Corollary 4.6) it follows that L/k is a separa-
bly generated extension. Let x be a separating element of L, that is, the extension
L/k(z) is finite and separable. Therefore L = k(z,y) for some y € L. If y is
not a separating element of L then y!/? is a separating element ([4], Corollary to
Theorem 2.1), thus y'/ P isa separating element of L where t is the inseparability
exponent of y over k(z) and we have that L = k(z,y'/?").



Vol. 116, 2000 SEMISIMPLE HOLOMORPHIC DIFFERENTIALS 349

PRrOPOSITION 3: Let L/k be a field of algebraic functions with k a perfect field
of characteristic p such that = is a separating element of L. Then LP(z)/LP is
an inseparable extension of degree p and every element f € L can be written in
a unique way as f = Ef:—ol fPz where f; € L, i € [0,p — 1].

Proof: Since L/k(z) is a separably generated extension, we have that L =
LPk(x) = LP(z). From ({7], Corollary 6.3) it follows that {z} is a p-transcendence
basis of L. From ([7], Lemma 6.4) it follows that [L”(z) : LP] = p. The extension
LP(z)/L? is inseparable. It follows that every element f € L can be written
uniquely as f = Ef:_ol fFaz* where f; € L, i € [0,p — 1]. [ |

Let f € L = L?(z). We define the Tate-trace of f by

p—1
Sulf) = Sz(fox’) — 7,
=0
We have that S, is LP-linear and that S,(f)/? = f,_;.
In the extension LP(z)/LP we consider the formal derivation

p—1 p—1
D, ( Z hf:n‘) = Z ihPzi™ L,
i=0 i=1

The k-vector space Q of the differentials of L is an L-vector space and
dimL (QL) =1

Let n be the unit divisor of L. We set 21,(0) := {w: w € Qr, and such that n|w}.

The space §2,(0) is called the space of holomorphic differentials of L.

Let wg € Q1 —(0). Since dimy, (1) = 1 we have that every differential w € 0y,
is expressed uniquely as w = @wy, ¢ € L. Since k is a perfect field, then there
exists a separating element x in L. We have that dz € Q0 is different from zero
([2], Theorem 4). Therefore every differential w € Q, is expressed uniquely as
w = fdz for some f € L. Furthermore, from Proposition 3 it follows that

p—1
w= (Z ffxi>dz.
=0
Now we consider k algebraically closed of characteristic p. We define C: 2y, —

Qy, the Cartier operator by C(w) = fp—1dz.

ProOPOSITION 4: The Cartier operator C does not depend on the separating
element of the field L.
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Proof: Let z,y be two separating elements of L. If w € Q; we have that

w = fdy for some f = Y7~ fPxi € L and w = gdz for some g € L. Therefore

w = fdy = fD.(y)dz = gdz. Since dim, () = 1 it follows that fD,(y) = g.
We have that

5. = 5:(1 o)

([13], Theorem 1). Hence, we obtain

1 1;"?
C(fdy) = fordy = S,(f)/Pdy = S, (fp—(w) dy
1

_s, (fD—(—y—)—l)/ Dtie = (8. (f 5= ) Dx(y)”)l/p r

1/p
=52 (1) s = 5. (D) o = u(0) e

=C(gdz). 1

Let V, W be k-vector spaces. An application ¢: V — W is said to be
p Llinear if ¢ satisfies d(v; + va) = ¢(vy) + H(v2) and ¢{ra) = r/7¢(a)
Yr€k,VYaecV.

Since 7, the unit divisor of L, is an integral divisor it follows from ([12], Lemma
2.1) that the Cartier operator C is a map p~!-linear such that C: Qr,(0) — 2.(0).
Since k is algebraically closed we have that ([12], Theorem 2.2) Q(0) = Q3 (0)®
Q7 (0), where Q3 (0) is the subspace of semisimple holomorphic differentials
of L and Q7(0) is the subspace of nilpotent holomorphic differentials of L,
that is, Q7 (0) = {w € Q(0): C™(w) = 0 for some m &€ N}.

3. Semisimple holomorphic differentials

Let k be an algebraically closed field of characteristic p, L/K a finite Galois
p-extension of algebraic function fields of one variable over k with Galois group
G = Gal(L/K). Let z € L be a separating element. Let S := {Py,..., P.} be the
set consisting of the prime divisors of K, which are ramified in L/K. For each
i € [1,7] we choose Q; a prime divisor of L such that @Q; divides to P;. We define
the set § = {QI,QQ,...,QT}. Let G,' = {O’ eG: Qf = Q,} = Dec(Q,- l Pl)
be the decomposition group of the prime @Q;. We have that if @} is any other
prime divisor of L dividing P;, then the group G; = Dec (Q; | P;) is conjugated
to the group G} = Dec (Q} | P;). Therefore we have that k[G/G;] = k[G/G?] as
k[G|-modules.
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Let 0 € G = Gal(L/K), w € Q. We have that w = hdz for some h € L.
From Proposition 3 it follows that the action of G on {} is given by ocw =
Zf:_ol o(h;)Pzdz. Thus, Qf is a k[G]-module, Q2,(0) is a k[G]-submodule of €2,
and Q3 (0) is a k[G]-submodule of (0).

Nakajima ([8], Theorem 2) obtained two k[G]-exact sequences which determine
implicitly the k[G]-module structure of 3 (0) for every extension L/K.

If the extension L/K is unramified we have the k[G]-exact sequence
(2) 0 — Q3(0) — k[G]™* — I — 0,

where Ig = (g — 1| g € G).
If the extension L/K is ramified we have the k[G]-exact sequence

(3) 0 — Q5(0) — K[G]" "% — ker (®) — 0,

where the k[Gl-epimorphism ®: @;_; k[G/G;] — k is defined by

@:i‘?@i,@( > a,,a)z Y .

oc€G/G; 0€G/G,

From (3) it follows that € (ker (®)) = Q3 (0)(!) as k[G]-modules. Since 3 (0)(©)
is a finitely generated projective k[G]-module, we have that Q3 (0)(?) is a free k[G]-
module. Therefore Q2 (0)(0) = k[G]* for some u > 0. Consequently we obtain
that

(4) Q3 (0) = k[G]* & Q (ker (D)) .

For a k[G]-module M, we will denote by X (M) := Homy(M, k) the contra-
gredient of M.

PROPOSITION 5: Let M be a finitely generated k[G]-module. Then Q# (X(M))
= X(Q(M)) as k[G]-modules.

Proof: ([3], Proposition 78.4). |

ProPOSITION 6: Let L/K be a finite Galois p-extension of algebraic function
fields of one variable with Galois group G = Gal(L/K) and field of constants
an algebraically closed field k of characteristic p. Let Py,..., P, be the ramified
prime divisors in L/ K and let G4, ..., G, be their decomposition groups, respec-
tively. Let Q3 (0) be the k[G]-module of the semisimple differentials holomorphic
of L. Let ® be the application given in (3). Then
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(a) X(ker(®)) & Sz kt[G/Gi] as k[G]-modules, where ke* is the diagonal of
@®._, k[G/Gi], that is,

ke*:{( > wo, ). mo)eék[G/Gi]:zek}.

c€G/Gy c€G/G, i=1

(b) Let c be the minimal natural number such that there exists an epimorphism
of k[G]-modules p: k[G]¢ — ker (®) and u € Ny such that % (0)© = k[G]*.
Then
(5) u=r—-1-c+ g,
and k[G]° is the projective k[G]-cover of ker (D).

(c) Let d be the minimal natural number such that there exists a monomor-
phism of k[G)-modules f: D k[G/G’] — k[G]). Then ¢ = d, k[G]° is

the injective k[G]-envelope of w and there exists a k[G]-exact
sequence

(d) There exists a k[G]-exact sequence

D1 kIG/Gi]

0— o

— k[G)" 17K 5 X(025,(0)) — 0.

(e) X(03(0)) 2 k[G]* & Q* (@L k’;[,G/G’]> as k[G]-modules, for some u > 0.

Proof:
(a) Since ® is a k[G]-epimorphism we have the k[G]-exact sequence

(7) 0 —> ker (® —+®k[G/G 2k —o0.

i=1
From ([6], Lemmas 3.5, 3.8-iii) and (7) we obtain the k[G]-exact sequence
(8) 0 — X (k) — P X(K[G/Gi]) — X (ker ()) — 0.
i=1
From (8) it follows that

9) X (ker (@) = Piz §<(';€[)G/Gil> N eai:lkli[f:/ai]_
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(b)

()

Let

Follows from (3), (4), Schanuel’s Lemma for injective k[G]-modules and the

Krull-Schmidt-Azumaya Theorem.

Set T := DL k’z[,G/ 1. We have the k|G]-exact sequence

(10) 0 — T — k[G]* — coker(f) — 0.
From (a) and (10) we have the k[G]-exact sequence
(11) 0 — X(coker(f)) — k[G]¢* — ker(®) — 0.

Since k[G]¢ is the projective k[G]-cover of ker(®) it follows that d = c.
Since (k[G], p) is the injective k[G]-envelope of T' we have that there exists
a k[G]-exact sequence

(12) 0 — T — k[G]° — coker(p) — 0

where coker(p) = Q¥ (T) @ k[G]® for some b > 0. From (12) we obtain

k[G]
T

"~ 0* (1) @ k(G).

k[G]®
=0
“(°7)
we have that b = 0 ([15], Proposition 1).
From ([6], Lemma 3.8-iii) and (3) we have the k[G]-exact sequence

Since

(13) 0 = X (ker (®)) — X (k[G]"~117F) — X(023,(0)) — 0.
From (9) and (13) we obtain the k[G]-exact sequence

@i KIG/Gi]
ke*
From (4), (9) and Proposition 5, it follows that, as k[G]-modules,

D’y G/
)

(14 0— — k[G" 1T — X(Q5.(0)) — 0.

X (025(0)) = k[G]* & X (Q (ker (®))) 2 k[G]* @ Q#<

T:= ————@:ﬂkke[f/ Gl & X (ker (8)).

We have
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PROPOSITION 7: Let k[G]¢ be the injective k[G]-envelope of T. Then
¢ = dimy, (T%).
Proof: From (6) we obtain the k[G]-exact sequence
(15) 0 — T — (K[G]°)¢ — (0% (T))°.

Therefore we obtain a k[G]-monomorphism T¢ — k°. It follows that ¢/ :=
dimy (T€) < dimg (k) = ¢ and TG = k¢ C k[G]. Therefore there exists a
k[G]-monomorphism p: T¢ — k[G]¢. Since k[G]® is an injective k[G]-module
and the inclusion map i: T¢ — T is a k[G]-monomorphism, it follows that there
exists p: T — k|G]¢ a k[G}-homomorphism such that p = poi. Suppose that
ker (p) # 0. Since k is a field of characteristic p, G a p-group and ker (p) a
k|G]-module we have (ker () # 0 ([10], Theorem 2). However (ker )¢ =
TG Nker (p) = ker (p) = {0}. Therefore p: T — k[G]° is a k[G]-monomorphism.
Since c¢ is minimal it follows that ¢ < ¢/. Hence ¢ = c. |

If A is a G-module then H"(G, A) will denote the n-th cohomology group
of G with coefficients in the module A.

PROPOSITION 8: Let G be a finite p-group, Hy, ..., H, subgroups of G,

@::1 k[G/Hl]

Tr = ke*

For each i € [1,r], let H; = (gH;g71 | g € G) be the normal closure of the
subgroup H; in G. We set H:=H,---H, and let dc/§ be the minimal number
of generators of the group G/H. Then dimy(T¢) = dimy, (7€) =r -1+ deo/a

Proof: For each i € [1,7] we consider the maps a;: kej — k[G/H;] with o;(z) =
> sec/n, T Since G acts trivially on kej we have that (ke*)® = ke* and
H'(G,ke}) = Hom (G, k).

Let o} be the application induced by «; on the cohomology groups.

Let r;: k[G/H;} — k be the k-linear map sending the coset H; to 1 and all
other cosets of H; to 0. Since k[G/H;] is the induced module Indgi k, it follows
from Shapiro’s Lemma that r; together with restriction of operators from G to
H; induces an isomorphism H! (G, k[G/H;]) — H! (H;, k) = Hom (H;, k).

Therefore o is identified with the homomorphism Hom (G, k) — Hom (H;, k)
induced by restricting characters from G to H;. Thus ¢ € ker (}) if and only if
% is trivial on the subgroup of G generated by the conjugates of H;.

Thus, we have that 9 € ker (o) <= H; < ker ().
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Let ¢ € ker () € Hom (G, k) . There exists a unique b€ Hom(G/H;, k) such
that 1/J(gI-AIi) =1 (g) for all g € G. Then, we have the k[G]-isomorphism

(16) p: ker (a) — Hom(G/H;, k) such that v — .

Let ®(G/H,) be the Frattini subgroup of G/H;. Then

dimy <Hom (g,k>)
H;

dimy | Hom v—G/H—i,k: = dG,/§ .
@ (G/Hi) '

Now we consider the k[G]-exact sequence,

I

dimy, (ker (o))

(17)

I

(18) 0 — ke* = P kIG/H;] T — 0

i=1

where a((z, ..., z)) = (a1(z),...,o-(z)). From (18) we obtain

”, G
0 —» (ke")® 2 (@ k[G/Hi]) 224 7.6 24 HY(G, ke*)
i=1

(19) LN @ HY (G, k[G/H)) — H' (G, Ty) — ---.
i=1

Therefore from (19) we obtain the exact sequence

0 — ke* 25 (ke*)” 2 7,¢ 2% Hom (G, k)

(20) L éH‘ (G,k[G/H;) — H' (G, T;) — ---.
1=1

Hence, we obtain
(21) 0 — ke* 2% (ke*)” 25 T,C 24 ker (@) — 0.

It follows that dimy (ker (p1)) =7 — 1. Thus we have the k-exact sequence
(22) 0 —> (ke*)™! — T,¢ — ker (a*) — 0.

Since a*(v) = (] (¥), ..., ar (1)), we have that

P €Eker(a*) <= 1eker(af) Viel[l,r],
< H;<ker(y) Vie[l,r],
&3 H=H; --H, <ker(y).
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Hence, we have ker (a*) = Hom(G/fI, k) and dimy, (ker (@*)) = dG/ﬁ. Finally,
from (22), we obtain dimy, (7}0) =r—1+ dc/ﬁ' (]
PRrROPOSITION 9: Let L/K be a finite Galois p-extension of algebraic function
fields of one variable with an algebraically closed field k of characteristic p as
its exact field of constants with Galois group G = Gal(L/K). Let Hy,...,H,
be arbitrary subgroups of G. Reordering the indices and taking conjugates if
necessary, let 1 < iy < i < --- <ig_1 < is =T be such that

Hla ey Hi1—1 g Hi1
Hijy1, ...y, Hi 1 C H;,
Hi .41, ..., Hi,.1C H;, =H,

and such that the subgroups H, ,H,,,..., H;, satisfy the condition that if for
1 < j,k < s there exists some g € G such that H;"]_ = gHiJg“1 C H;, , thenj=k.
Let Ay := {i1,19,...,is} and Ay := [1,r] — A2. Then

OLHG/H) o by 416y o Bicas HO/H
ke* e* ’

1€A; Az

where

kejzh::{( Yo oz, Y. zo)e@k[G/Hi]:wek}.

o€G/H;, c€eG/H,, i€A2

Proof: For each j € [1, s] we define the k[G]-monomorphism,

A’;j: k[G/Hij] — k[G/H’[J]
oap o 3o oay X0
YEG/Hi, YEG/H,, aCy
JEG/Hij

where 3 € [i;-1 + 1,i;—1], ip = 0. We define the following k[G]-homomorphism

A: @k[G/Hz] d ie"—zl'lgfi'{d by (615"'7511]'"",61“) - (cly---ac‘r-—l,cr)a
i=1

where
¢ = &+ A (&) %fte Eij—1+1,ij—1]],
E’ij lf t = 'Lj.
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A is a k[G]-epimorphism with ker (A) = D C @;_, k[G/H;] where

D:={<0,...,0, dooap,0,...,0, > ay,

YEG/H,, YEG/H,,
0,...,0, Y m/)):anek}. ]
YEG/H,,

Professor Alfred Weiss proved that the F[G]-module EF%I is an indecomposable
F|G]-module, where F' is an arbitrary field of characteristic p, G a finite p-
group and S := W_, G/H; with H; arbitrary subgroups of G satisfying that
H} =gH;g7! C H; for some g € G < i = .

ProPOSITION 10 (Weiss): Let G be a finite p-group, F' a field of characteristic
p, S a finite set, such that G acts on S, H a subgroup of G acting by restriction
on S and B an F|G]-module. Then
(a) ThesetS :={X: X is a H-orbit in S} is an F-base of the module (F[S])"
and § := {X + FS: X is a H-orbit in S} is an F-generator of the module
(FISD"

F3
(b) We consider the homomorphism of F-algebras
¢ Bndpg(B) - Endr(Z5)
fooo- f.
Let A := ¢ (Endpg)(B)). Then

A ~ EndF[G] (B)

rad(A) ~ rad (Endp(g)(B))

where rad(A) denotes the Jacobson radical of A.
(c) Let B := %%1 Then B is an indecomposable F|G]-module if and only if A
is a local ring.

Proof:

(a) It is clear.

(b) Since G is a finite p-group and F is a field of characteristic p we have that
I is a nilpotent ideal ([9], Lemma 2.21). Therefore there exists s € N such
that I&, = (0). We have that ker () = {f € Endp(g) (B): f(B) C IgB} is
a nilpotent ideal. Then ker (¢) C rad (End (g (B)). It follows from ([3],
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Proposition 5.1) that
4 (Endp[c](B)) ., rad (End(g)(B))

ker(2) ker (1)
Since 9: Endpig)(B) — A is an epimorphism we have that
EndF[G](B) ~ 4
ker(y)
Hence End e (B)
Ker(d) ~ _ Endrig) (B) v A
rad (E"‘;F[(C:b])(B)) rad (Endpig) (B))  rad (A)

(c) We have that B is a finitely generated F[G]-module. From ([3], Proposition
6.10) we obtain that B is an indecomposable F[G]-module if and only if
Endp(g)(B) is a local ring and that End g (B) is a local ring if and only
if EndF[G](B) ~ A

rad (Endpic)(B)) ~ rad (A)
is a division ring. From ([3], Proposition 5.21) we have that @%Zj is a
division ring if and only if A is a local ring. |

Let G be a finite p-group, H a subgroup of G such that G acts on a finite set
S and X an H-orbit over S. We say that X is a Weiss H-orbit over S if X
contains some s € S such that the stabilizer G, satisfies G, < H.

Let X be an H-orbit over S and let s € S. If Gy = H,, then G, C H and X
is a Weiss H-orbit over S. Conversely, if X is a Weiss H-orbit over S then there
exists t € S such that G; C H. It follows that if g € Gy, then g € H and gt = t.
Therefore G; C H; so that G; = H;. Therefore X is a Weiss H-orbit over S if
and only if G, = H, for some s € X if and only if G, C H for some s € X.

Let F be a field of characteristic p and H a subgroup of G. If X is a
left transversal of H in G and M is an F[G]-module, we consider the map
Trg/u: MY — M€ defined by Trg/u(m) = 3, cxgim.

PROPOSITION 11 (Weiss): Let G be a finite p-group, F a field of characteristic
p, S a finite set such that G acts on S, H a subgroup of G acting by restriction

on S. Then B := {Trg/u(X): X is a Weiss H-orbit} is an F-base of the module
Trg/u (F[SIH).

Proof: 'We consider ¢ € Trg,y (F[S])*). Then

t t
e=Trg/n <an> =Y i Trg/u(Xi)

i=1 i=1
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where 7; € F and X;, 1 € [1,t] are the H-orbits over S. Let s € S and let X; be
an H-orbit over S such that s € X;. We have that if H = HEZ;H”] h;H, then the
H-orbit X; is given by X; = {hs:i € [ 1,[H : Hs] ]}. From ([6], Lemma 8.3),
we obtain

——

Treo/u(Xe) = Tre/n Trayn,(s) = Trgyn, (s) = Trayas Tra,/ny(8)

0, if G, = H,
=Trg,q, (1Gs : Hy)s) = [Gs : Hy) Trgc, (s):{ OQ othermwise

where @s is the G-orbit over S containing s. Therefore
t n e
£ = ZT‘,’ [Gs : HS]TI‘G/GS (8) = ZT’,’ Trg/H(X,')
=1 =1
where the X;’s are Weiss H-orbits over S. Furthermore, we have that B is an

F-linearly independent set. Hence B is an F-base of Trg, g (F[S)# )- |

PROPOSITION 12 (Weiss): Let G be a finite p-group, F' a field of characteristic
p and Hy, ..., H, subgroups of G satisfying:

(23) Hf:gH,-g_1 CH; forsomegecG+=i=j
and such that G acts in a natural way on the set S :=J._, G/H;. Then
B:= E[—E’—]

FS

is an indecomposable F[G]-module.

Proof: Let A:= {f f € Endpg)(B)}, where
- B -
feEndp | — and f(z+ IgB) = f(z)+ IgB.
IeB

From Proposition 10 it follows that in order to prove the F[G]-indecomposability
of the module B it suffices to prove that A is a local ring.
Let v; := n(H; + FS), j € [1,7] where
B
B> —
7B T.B
is the canonical projection. We define the set V := {v;: j € [1,7]}. If g € G we
have that (g — 1)(H; + F§) € IgB. Therefore

n(gH; + FS) = n(H; + F§) =v; VYge G Vje[lL,7].
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We have that V is an F-generator set of the module 'I%‘ Now, ifx € F S then

z=Y Y (bg;—bH; € IcF[S],

i=1g,€T(G/H,)

where T(G/Hj) is a left transversal of H; in G. Therefore FSC IgF[S]. The
application

p IGFIS] -  Ig (ELSJ)

FS

n n ~
Zl‘,’yi - Z.'Iii (y,—l—FS),
i=1 =1

where z; € Ig, y; € F[S] is an F[G]-epimorphism and ker(p) = FS. If z € F§

then .,
z=Y_ Y. (bg —bH;

§=1¢,€T(G/H,)
Therefore p(z) = 0. Hence F S C ker(p). Conversely, if z € ker(p) then
plz) = P(Zzz'yi) = Z-'L'i(yi +FS8)=F5=o.
=1 i=1

It follows that > 0 ; ziy; + FS = FS. Therefore YTy =2 € FS. Hence

ker(p) = FS. Then

IcB = uatly
FS

We consider now an element z € IgF[S]. We have that z = Y - | @;y; for
some x; € Ig, y; € F[S]. Hence

o) (L X wn) X ¥ 3 )

geG j=l0,eG/H; i=10;€G/H; geG

(24) ziyi = (

Therefore, for each 0; € G/H; and for each j € [1,r] the coefficients of the

summand )’ (rgas,9) 0 satisfy 3 cargto; = (LgeqTe)as;, = 0. Now,

let a;v; + -+ + a,v, = 0 be any linear F-combination of the v; equal to zero.

Therefore [.FIS
(@ Hi+ - +a,H)+FSe€IgB~ IeF15]

From (24) it follows that a; = 0 Vi € [1,7]. Therefore V is an F-base of IGLB.

Hence f is completely determined by its values on the v; and

~

fv;) = f (H; + F§) + IaB.
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Let z; € F|S] be such that f(H; + FS) = z; + FS. Since f € Endpig)(B)
it follows that for every g € G, gz; + FS = gf(H; + FS) = f(¢H; + FS).
Therefore, if g € H; we have that f(gH; +FS) = f(Hj+F§) = :nj+F§. Hence

~  F[S)H
H;+FS)e ——.
f(H; ) PR
The module Fﬁsﬁj is an F-module generated by the set

{)? +FS: Xisa Hj-orbit over S} .
Therefore

(25) f(H; +FS)= Y (X)X +FS) = ( > (X))?) + F5,
XeS/H; XeS/H,
where a; (X) € F and S/H; represents the set of Hj;-orbits over S.
Since F'S = § + FS we have that

FS =Y Trgu,(f(H; + FS)) Z Y ai(X) Trgm (X) + FS.

j=1 J=1XeS/H;

If X is not a Weiss H-orbit, from Proposition 11 we obtain that Trg, H; ()’(: )=
0. Therefore

26) > > ai(X)Traum(X)+FS =" 3" a;(X) Trgn, (X) + FS,

j=1 XeS/H; =l XeWw

where W is the set of Weiss Hj-orbits over S. Since X is an Hj-orbit over S, we
have that X = {g¢'H;: g € H;} for some ¢ € [1,7]. Since X is a Weiss H-orbit
over S, it follows that there exists some xg'H; € X such that Gzyp; C H;. We
have that Gygn, = Hfg’. Therefore Hfgl C H;j. From Proposition 12 we have
that ¢ = j. Therefore zg’H;g ~'a~! C H;. Since |¢’H;g ~!| = |Hj], it follows
that g’ng’_1 = H;. Therefore ¢’ € Ng (H;). We have that

X ={99'Hj: g € H;j} = {gH,g": g € H;} = {g'H;}.

Hence

FS=%"%" oj(X) Trgn,(X) + FS
j=1Xew

=3 > o (gH) Trgm (6'Hy) + FS.

J=1g'eNg(Hj)
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Then 371 3y enny) ({9 Hi}) Teg/m (9'H;) € FS. Since Trgyu,(9'H;)
= ZZEG/Hj zH,, it follows that

o > aUIHNTrem@H) =), Y Y. a;({dH})zH;

j=1g¢'€Ng(H;) i=12€G/H; g¢'eNg(H,)

Therefore, the element 377, Zzec/Hj Yyenen,) ({9 Hj})zH; belongs to
FS.

We obtain that the element 3 .y ( H,) a;({¢'H;}) is independent of j. We
set ,

a(f)== Y o({¢H;})€F.
g'€NG(H;)
From (25) it follows that

Fwy) = w( 3 aj(X>(2?+F§>) = Y a{dH ) (H; + F8) = a(f)o;.

XeWw g’GNG(Hj)

Hence f(vj) = a(f)v;. That is, f is the multiplication by a(f). Therefore A = F.
1

ProOPOSITION 13: With the conditions and notations of Propositions 8 and 9,
let Hi = Gi. Let

M: = Mﬂ
kej12
Then, as k[G]-modules,
|A2|—l+d
k[G] G/H
# ~
W = Q% (M) 7

and W is an indecomposable k|G|-module. Furthermore, as k-module we have
that W = k* where

G
a=|Gldg,5+ ) (|G| - ||G~||) +1-1G|.
iCAg ¢

Proof: From Propositions 1, 9 and 12 we have that M is an indecomposable k[G]-
module. We have that any injective k[G]-component N of M satisfies N = k[G]°
for some b € Ny. Since N(M) = 0-it follows that b = 0 ([15], Proposition
1). Therefore M = M®). From Proposition 2-(c) we have that Q# (M) is an
indecomposable k[G]-module.
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The k[G]-sequence

|Az|—1+d

(27) 0 — M — k[G] o/ — QF (M) — 0

is exact (Proposition 6-(c)). The result follows. ]

THEOREM 1: Let L/K be a finite Galois p-extension of algebraic function fields
of one variable with Galois group G = Gal(L/K) and field of constants an
algebraically closed field k of characteristic p. Let Q3 (0) be the k[G]-module
of the semisimple holomorphic differentials of L. Let Py,..., P, be the ramified
primes in L/K and let Gi,...,G, be their decomposition groups respectively.
For each i € [1,r] we define G; = (gGig~' | g € G) the normal closure of the
subgroup G; in G, H:= é\l e C/J\T and d, /B the minimal number of generators
of the group G/ H. Reordering the indices and taking conjugates if necessary, let
1<i <iyg <+ - <ig_1<is=r besuch that

Gy, ..., Gi{,1C Gy
Gi41, -y Gy 1€ Gy,
Gi,_141, -y Giy1C Gy, =G,

and such that satisfy the condition: If for 1 < j,k < s, there exists some g € G
such that G = 9Gi;97" C Gi,, then j = k. Let Ay := {i1,iz,...,is} and
Ay :=[1,7r] = Az. Then the modular decomposition in terms of indecomposable
k[G]-modules of €5 (0) is given by

TK —d

03(0) = k[G] ™ e & (P Ie.¢. ® Qker(®0)),

i€A;

where
Igg, = { Zagg € k[G]: Zag =0Vo e G/Gi},
geG ge€o

®, is the restriction of & on the module @), 5, k[G/G;], where ® is as in (3).
We have that

ker(@o):{< Z 00,. .., Z aaa):z Z aa=0},
6€G/G;, 0€G/G;, i€A2 0€G/G;

@’iGAg k’[G/Gi]

*
ke s

Q(ker(®g)) = Q(X(M)), where M =

bl
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kely, = {<UGGX/"G,.1 zo,..., Y xa) € P krG/Gi:z € k}.

c€G/G,, €A,

The indecomposable k[G]-module

|A2|—1+dG/A
W = Q(ker(®y)) = FLG) - .
satisfies W = k® as k-module, where
G
a=|Gldgz+ Y (|G| llGll) +1-G|.

i€Aq
Proof: From Proposition 6-(e) we have that as k[G]-modules
: (0)) = #(Dizi IG/G
X(23,(0)) = k[G]* @ # (=L
for some u > 0. From Propositions 2-(d), 6, 7, 8 and 9 we obtain
k|G]

(28) K00 2 HE™ o @ ey

& QF(M).

Therefore

X(X(24,(0))) = X(k[G]™ o) o X( €D KIG/Gi]
i€A; '

) & X(QF (M)).

From the argument used to prove Proposition 6-(a) it follows that X(ker(®y))
=~ M. Therefore, from Proposition 5 and ([6], Lemma 3.5) we have that as

k[G}-modules
(29) X(O#(M)) = X(Q* (X(ker(®p)))) = X(X(Q(ker(Dp)))) = Q(ker(Dy)).

#(X
From Propositions 2-(d), 5 we have that

X (k[g?c]m) > Q (X(K[G/Gi])) = QKIG/GJ)).

From [16] and [17] we have that Ig g, = Q(k[G/G;]) and that Ig g, is an
indecomposable k[G]-module.
From ([6], Corollary 3.4, Lemmas 3.5 , 3.6), (28) and (29) we obtain that

Q3,(0) = KG™ e/ & D) L., © Aker(%)).
i€A,
Finally, from Propositions 1, 12, 13 and ([6], Lemma 3.5) we have that the
k[G)-module X(02# (M)) = Q(ker(®)) is an indecomposable k[G]-module. |
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