ON THE GALOIS MODULE STRUCTURE OF SEMISIMPLE HOLOMORPHIC DIFFERENTIALS

ΒY

PEDRO RICARDO LÓPEZ-BAUTISTA

Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco Av. San Pablo No. 180, Col. Reynosa Tamaulipas Azcapotzalco D.F., C.P. 02200, México, D.F. e-mail: rlopez@hp9000a1.uam.mx

AND

GABRIEL DANIEL VILLA-SALVADOR*

Departamento de Matemáticas, Centro de Investigación y de Estudios Avanzados del I.P.N. Apartado Postal 14-740, 07000 México, D.F. e-mail: villa@math.cinvestav.mx

ABSTRACT

Let L/K be a finite Galois *p*-extension of algebraic function fields of one variable over an algebraically closed field *k* of characteristic *p*, with Galois group $G = \operatorname{Gal}(L/K)$. The space $\Omega_L^s(0)$ of semisimple holomorphic differentials of *L* is the *k*-vector space of holomorphic differentials which are fixed by the Cartier operator. We obtain the isomorphism classes and multiplicities of the summands in a Krull–Schmidt decomposition of the k[G]-module $\Omega_L^s(0)$ into a direct sum of indecomposable k[G]-modules.

1. Introduction

Let L be an algebraic function field in one variable over an algebraically closed constant field k. The space $\Omega_L(0)$ of holomorphic differentials of L forms a k-vector space of dimension g_L , the genus of L. Let G be a finite group of automorphisms of L/k. There is a natural action of G on $\Omega_L(0)$. Therefore,

^{*} Partially supported by CONACyT, project No. 25063-E. Received March 11, 1998 and in revised form January 18, 1999

 $\Omega_L(0)$ has structure of k[G]-module where k[G] is the group ring with coefficients in k.

The problem of determining the k[G]-module structure of $\Omega_L(0)$ has been studied by many authors (see [16] for more details). In the classical case, that is, when k is the field of complex numbers, following a suggestion of E. Hecke, Chevalley and Weil determined completely its structure for arbitrary G. However, if k has characteristic p > 0 this problem is still open.

An explicit determination of a k[G]-module A is one which determines the isomorphism classes and multiplicities of the indecomposable summands in a decomposition of A as direct sum of indecomposable k[G]-modules.

Assume now that G is a finite p-subgroup of $\operatorname{Aut}(L/k)$, where p is an arbitrary rational prime. Let K denote the field fixed by G, where k is a field of characteristic p.

In this situation we are interested in $\Omega_L^s(0)$, the submodule of $\Omega_L(0)$ generated by the holomorphic differentials of L which are invariant under C, the Cartier operator. We have that $\Omega_L^s(0)$ is isomorphic as k[G]-module to the elements of order dividing p of the Jacobian of a smooth curve with function field L ([11], Proposition 10). It is well-known that as k-modules $\Omega_L^s(0) \cong k^{\tau_L}$, where τ_L is the Hasse-Witt invariant of L.

Nakajima ([8], Theorem 2) obtained two k[G]-exact sequences which determine implicitly the structure as k[G]-module of $\Omega_L^s(0)$, the first one when the extension L/K is ramified and the second one when the extension L/K is unramified. In the case L/K is ramified, Nakajima established the k[G]-exact sequence $0 \rightarrow \Omega_L^s(0) \rightarrow k[G]^{r-1+\tau_K} \rightarrow \ker(\Phi) \rightarrow 0$, where τ_K is the Hasse–Witt invariant of K,

$$\Phi = \bigoplus_{i=1}^{r} \Phi_{i}, \quad \Phi_{i} \left(\sum_{\sigma \in G/G_{i}} a_{\sigma} \sigma \right) = \sum_{\sigma \in G/G_{i}} a_{\sigma},$$

and G_1, \ldots, G_r are the decomposition groups of the prime divisors P_1, \ldots, P_r of K ramified in L. Therefore, if L/K is ramified it follows that the implicit structure as k[G]-module of $\Omega^s_L(0)$ is given by

$$\Omega^s_L(0) \cong k[G]^u \oplus \Omega(\ker(\Phi))$$

where u is a nonnegative integer and Ω denotes the Heller's loop-space operation.

We are interested in the explicit structure as k[G]-module of $\Omega_L^s(0)$. This structure is known when L/K is an unramified extension [16], when there exists a fully ramified prime in the extension L/K [17] and finally when there exists a unique maximal decomposition group and this is normal in G [17]. This problem has been investigated by many authors (see [8], [12], [14], [16], and [17] for more details).

In this paper we obtain unconditionally and explicitly the Galois module structure of $\Omega_L^s(0)$ (Theorem 1). The work of A. Weiss on indecomposable modules for finite *p*-groups is crucial in the proof of the main result of this paper.

2. Notation and preparatory results

In this paper p will denote an arbitrary rational prime number and G a finite p-group.

We will denote the disjoint union of the sets X_1, \ldots, X_n by $\bigcup_{i=1}^n X_i$, $\mathbb{N} := \{1, 2, 3, \ldots\}$, $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$. For an arbitrary field k we have that if M is a finitely generated k[G]-module, then M is a projective k[G]-module if and only if M is an injective k[G]-module.

For a k[G]-module M, we denote by $M^G := \{m \in M : gm = m \text{ for all } g \in G\}$ and we define the map $\mathcal{N} : M \to M$ by

$$\mathcal{N}(m) = \left(\sum_{g \in G} g\right) m.$$

Any non-zero k[G]-module M can be written as a direct sum $M \cong \bigoplus_{i=1}^{s} M_i$ in terms of indecomposable k[G]-modules M_i . By the Krull-Schmidt-Azumaya Theorem ([3], Theorem 6.12), the components M_i 's are uniquely determined up to isomorphism.

If F is a field and X is a finite set, we set $\widehat{X} := \sum_{x \in X} x \in F[X]$.

PROPOSITION 1: Let G be a finite p-group and H_1, \ldots, H_r subgroups of G. We consider the natural action of G on the set $S := \bigcup_{i=1}^r G/H_i$. Then, as k[G]-modules,

(1)
$$\frac{\bigoplus_{i=1}^{m} k[G/H_i]}{ke^*} \cong \frac{k[S]}{k\widehat{S}}$$

where

$$ke^* = \left\{ \left(\sum_{\sigma_1 \in G/H_1} a\sigma_1, \cdots, \sum_{\sigma_r \in G/H_r} a\sigma_r \right) \in \bigoplus_{i=1}^r k[G/H_i]: a \in k \right\}.$$

Proof: We consider the k[G]-isomorphism

$$\phi \colon \bigoplus_{i=1}^r k[G/H_i] \to k[\biguplus_{i=1}^r G/H_i]$$

given by

$$\phi\left(\left(\sum_{\sigma_1\in G/H_1}a_{\sigma_1}\sigma_1,\cdots,\sum_{\sigma_r\in G/H_r}a_{\sigma_r}\sigma_r\right)\right)=\sum_{i=1}^r\sum_{\sigma_i\in G/H_i}a_{\sigma_i}\sigma_i.$$

Then, as k[G]-modules, $\bigoplus_{i=1}^{r} k[G/H_i] \cong k[\bigcup_{i=1}^{r} G/H_i]$. The result follows.

Let P be a k[G]-module. We write $P = P^{(0)} \oplus P^{(1)}$ where $P^{(0)}$ is k[G]injective and $P^{(1)}$ does not have injective k[G]-components. For a k[G]-exact sequence $0 \to M \to Y \to N \to 0$ with Y an injective k[G]-module, we set $\Omega^{\#}(M) := N^{(1)}$ and $\Omega(N) := M^{(1)}$. The module $\Omega^{\#}(M)$ is called the **dual of** the Heller's loop-space operation of M and $\Omega(N)$ is called the Heller's loop-space operation of N.

PROPOSITION 2: Let k be a field and let G be a finite p-group. Let M be a finitely generated k[G]-module such that $M \cong M^{(1)}$. Then

- (a) $\Omega(\Omega^{\#}(M)) \cong M$ as k[G]-modules.
- (b) $\Omega^{\#}(\Omega(M)) \cong M$ as k[G]-modules.
- (c) If M is an indecomposable k[G]-module, then $\Omega^{\#}(M)$ is an indecomposable k[G]-module.
- (d) Let k be of characteristic p and $H \leq G$. Then $\Omega^{\#}(k[G/H])$ is an indecomposable k[G]-module and

$$\Omega^{\#}\left(k[G/H]\right) \cong \frac{k[G]}{k[G/H]}$$

as k[G]-modules.

Proof: ([3], Propositions 78.4, 78.5 and [17]).

Let L/k be a field of algebraic functions with k a perfect field of characteristic p.

From ([4], Theorem 2.1) and ([7], Corollary 4.6) it follows that L/k is a separably generated extension. Let x be a separating element of L, that is, the extension L/k(x) is finite and separable. Therefore L = k(x, y) for some $y \in L$. If y is not a separating element of L then $y^{1/p}$ is a separating element ([4], Corollary to Theorem 2.1), thus y^{1/p^t} is a separating element of L where t is the inseparability exponent of y over k(x) and we have that $L = k(x, y^{1/p^t})$.

PROPOSITION 3: Let L/k be a field of algebraic functions with k a perfect field of characteristic p such that x is a separating element of L. Then $L^p(x)/L^p$ is an inseparable extension of degree p and every element $f \in L$ can be written in a unique way as $f = \sum_{i=0}^{p-1} f_i^p x^i$ where $f_i \in L, i \in [0, p-1]$.

Proof: Since L/k(x) is a separably generated extension, we have that $L = L^p k(x) = L^p(x)$. From ([7], Corollary 6.3) it follows that $\{x\}$ is a *p*-transcendence basis of *L*. From ([7], Lemma 6.4) it follows that $[L^p(x) : L^p] = p$. The extension $L^p(x)/L^p$ is inseparable. It follows that every element $f \in L$ can be written uniquely as $f = \sum_{i=0}^{p-1} f_i^p x^i$ where $f_i \in L, i \in [0, p-1]$.

Let $f \in L = L^p(x)$. We define the **Tate-trace** of f by

$$S_x(f) := S_x\left(\sum_{i=0}^{p-1} f_i^p x^i\right) = f_{p-1}^p$$

We have that S_x is L^p -linear and that $S_x(f)^{1/p} = f_{p-1}$.

In the extension $L^p(x)/L^p$ we consider the formal derivation

$$D_x\left(\sum_{i=0}^{p-1} h_i^p x^i\right) = \sum_{i=1}^{p-1} i h_i^p x^{i-1}.$$

The k-vector space Ω_L of the differentials of L is an L-vector space and $\dim_L(\Omega_L) = 1$.

Let η be the unit divisor of L. We set $\Omega_L(0) := \{\omega \colon \omega \in \Omega_L \text{ and such that } \eta | \omega \}$.

The space $\Omega_L(0)$ is called the space of holomorphic differentials of L.

Let $\omega_0 \in \Omega_L - (0)$. Since dim_L $(\Omega_L) = 1$ we have that every differential $\omega \in \Omega_L$ is expressed uniquely as $\omega = \varphi \omega_0$, $\varphi \in L$. Since k is a perfect field, then there exists a separating element x in L. We have that $dx \in \Omega_L$ is different from zero ([2], Theorem 4). Therefore every differential $\omega \in \Omega_L$ is expressed uniquely as $\omega = f dx$ for some $f \in L$. Furthermore, from Proposition 3 it follows that

$$\omega = \left(\sum_{i=0}^{p-1} f_i^p x^i\right) dx.$$

Now we consider k algebraically closed of characteristic p. We define $C: \Omega_L \to \Omega_L$ the Cartier operator by $\mathcal{C}(\omega) = f_{p-1}dx$.

PROPOSITION 4: The Cartier operator C does not depend on the separating element of the field L.

We have that

$$S_x(f) = S_x\Big(frac{1}{D_x(y)^{p-1}}\Big)$$

([13], Theorem 1). Hence, we obtain

$$\begin{split} \mathcal{C}(fdy) &= f_{p-1}dy = S_y(f)^{1/p}dy = S_x \left(f\frac{1}{D_x(y)^{p-1}}\right)^{1/p}dy \\ &= S_x \left(f\frac{1}{D_x(y)^{p-1}}\right)^{1/p} D_x(y)dx = \left(S_x \left(f\frac{1}{D_x(y)^{p-1}}\right) D_x(y)^p\right)^{1/p}dx \\ &= S_x \left(f\frac{D_x(y)^p}{D_x(y)^{p-1}}\right)^{1/p}dx = S_x (fD_x(y))^{1/p}dx = S_x(g)^{1/p}dx \\ &= \mathcal{C}(gdx) \,. \end{split}$$

Let V, W be k-vector spaces. An application $\phi: V \to W$ is said to be p^{-1} -linear if ϕ satisfies $\phi(v_1 + v_2) = \phi(v_1) + \phi(v_2)$ and $\phi(r\alpha) = r^{1/p}\phi(\alpha)$ $\forall r \in k, \forall \alpha \in V.$

Since η , the unit divisor of L, is an integral divisor it follows from ([12], Lemma 2.1) that the Cartier operator C is a map p^{-1} -linear such that $C: \Omega_L(0) \to \Omega_L(0)$. Since k is algebraically closed we have that ([12], Theorem 2.2) $\Omega_L(0) \cong \Omega_L^s(0) \oplus \Omega_L^n(0)$, where $\Omega_L^s(0)$ is the subspace of **semisimple holomorphic differentials** of L and $\Omega_L^n(0)$ is the subspace of **nilpotent holomorphic differentials** of L, that is, $\Omega_L^n(0) = \{\omega \in \Omega_L(0): C^m(\omega) = 0 \text{ for some } m \in \mathbb{N}\}.$

3. Semisimple holomorphic differentials

Let k be an algebraically closed field of characteristic p, L/K a finite Galois p-extension of algebraic function fields of one variable over k with Galois group $G = \operatorname{Gal}(L/K)$. Let $x \in L$ be a separating element. Let $S := \{P_1, \ldots, P_r\}$ be the set consisting of the prime divisors of K, which are ramified in L/K. For each $i \in [\![1, r]\!]$ we choose Q_i a prime divisor of L such that Q_i divides to P_i . We define the set $\widehat{S} := \{Q_1, Q_2, \ldots, Q_r\}$. Let $G_i := \{\sigma \in G: Q_i^{\sigma} = Q_i\} = \operatorname{Dec}(Q_i \mid P_i)$ be the decomposition group of the prime Q_i . We have that if Q_i^* is any other prime divisor of L dividing P_i , then the group $G_i = \operatorname{Dec}(Q_i \mid P_i)$ is conjugated to the group $G_i^* = \operatorname{Dec}(Q_i^* \mid P_i)$. Therefore we have that $k[G/G_i] \cong k[G/G_i^*]$ as k[G]-modules.

Let $\sigma \in G = \text{Gal}(L/K)$, $\omega \in \Omega_L$. We have that $\omega = hdx$ for some $h \in L$. From Proposition 3 it follows that the action of G on Ω_L is given by $\sigma \omega = \sum_{i=0}^{p-1} \sigma(h_i)^p x^i dx$. Thus, Ω_L is a k[G]-module, $\Omega_L(0)$ is a k[G]-submodule of Ω_L and $\Omega_L^s(0)$ is a k[G]-submodule of $\Omega_L(0)$.

Nakajima ([8], Theorem 2) obtained two k[G]-exact sequences which determine implicitly the k[G]-module structure of $\Omega_L^s(0)$ for every extension L/K.

If the extension L/K is unramified we have the k[G]-exact sequence

(2)
$$0 \longrightarrow \Omega^s_L(0) \longrightarrow k[G]^{\tau_K} \longrightarrow I_G \longrightarrow 0,$$

where $I_G = \langle g - 1 \mid g \in G \rangle$.

If the extension L/K is ramified we have the k[G]-exact sequence

(3)
$$0 \longrightarrow \Omega_L^s(0) \longrightarrow k[G]^{r-1+\tau_K} \longrightarrow \ker(\Phi) \longrightarrow 0,$$

where the k[G]-epimorphism Φ : $\bigoplus_{i=1}^{r} k[G/G_i] \to k$ is defined by

$$\Phi = \bigoplus_{i=1}^{r} \Phi_{i}, \Phi_{i} \left(\sum_{\sigma \in G/G_{i}} a_{\sigma} \sigma \right) = \sum_{\sigma \in G/G_{i}} a_{\sigma}.$$

From (3) it follows that Ω (ker (Φ)) $\cong \Omega_L^s(0)^{(1)}$ as k[G]-modules. Since $\Omega_L^s(0)^{(0)}$ is a finitely generated projective k[G]-module, we have that $\Omega_L^s(0)^{(0)}$ is a free k[G]-module. Therefore $\Omega_L^s(0)^{(0)} \cong k[G]^u$ for some $u \ge 0$. Consequently we obtain that

(4)
$$\Omega_L^s(0) \cong k[G]^u \oplus \Omega\left(\ker\left(\Phi\right)\right).$$

For a k[G]-module M, we will denote by $\mathbb{X}(M) := \operatorname{Hom}_k(M, k)$ the contragredient of M.

PROPOSITION 5: Let M be a finitely generated k[G]-module. Then $\Omega^{\#}(\mathbb{X}(M)) \cong \mathbb{X}(\Omega(M))$ as k[G]-modules.

Proof: ([3], Proposition 78.4).

PROPOSITION 6: Let L/K be a finite Galois p-extension of algebraic function fields of one variable with Galois group G = Gal(L/K) and field of constants an algebraically closed field k of characteristic p. Let P_1, \ldots, P_r be the ramified prime divisors in L/K and let G_1, \ldots, G_r be their decomposition groups, respectively. Let $\Omega_L^s(0)$ be the k[G]-module of the semisimple differentials holomorphic of L. Let Φ be the application given in (3). Then (a) $\mathbb{X}(\ker(\Phi)) \cong \frac{\bigoplus_{i=1}^{r} k[G/G_i]}{ke^*}$ as k[G]-modules, where ke^* is the diagonal of $\bigoplus_{i=1}^{r} k[G/G_i]$, that is,

$$ke^* = \left\{ \left(\sum_{\sigma \in G/G_1} x\sigma, \dots, \sum_{\sigma \in G/G_r} x\sigma \right) \in \bigoplus_{i=1}^r k[G/G_i] : x \in k \right\}.$$

- (b) Let c be the minimal natural number such that there exists an epimorphism of k[G]-modules $\rho: k[G]^c \to \ker(\Phi)$ and $u \in \mathbb{N}_0$ such that $\Omega_L^s(0)^{(0)} \cong k[G]^u$. Then
 - (5) $u = r 1 c + \tau_K,$

and $k[G]^c$ is the projective k[G]-cover of ker (Φ) .

(c) Let d be the minimal natural number such that there exists a monomorphism of k[G]-modules $f: \underbrace{\bigoplus_{i=1}^{r} k[G/G_i]}_{ke^*} \to k[G]^d$. Then c = d, $k[G]^c$ is the injective k[G]-envelope of \underbrace{\bigoplus_{i=1}^{r} k[G/G_i]}_{ke^*} and there exists a k[G]-exact sequence

(6)
$$0 \longrightarrow \frac{\bigoplus_{i=1}^r k[G/G_i]}{ke^*} \longrightarrow k[G]^c \longrightarrow \Omega^{\#}\left(\frac{\bigoplus_{i=1}^r k[G/G_i]}{ke^*}\right) \longrightarrow 0.$$

(d) There exists a k[G]-exact sequence

$$0 \to \frac{\bigoplus_{i=1}^{r} k[G/G_i]}{ke^*} \to k[G]^{r-1+\tau_K} \to \mathbb{X}(\Omega_L^s(0)) \to 0.$$

(e) $\mathbb{X}(\Omega_L^s(0)) \cong k[G]^u \oplus \Omega^{\#}\left(\frac{\bigoplus_{i=1}^{r} k[G/G_i]}{ke^*}\right)$ as $k[G]$ -modules, for some $u \ge 0.$

Proof:

(a) Since Φ is a k[G]-epimorphism we have the k[G]-exact sequence

(7)
$$0 \longrightarrow \ker(\Phi) \longrightarrow \bigoplus_{i=1}^{r} k[G/G_i] \xrightarrow{\Phi} k \longrightarrow 0.$$

From ([6], Lemmas 3.5, 3.8-iii) and (7) we obtain the k[G]-exact sequence

(8)
$$0 \longrightarrow \mathbb{X}(k) \longrightarrow \bigoplus_{i=1}^{r} \mathbb{X}(k[G/G_i]) \longrightarrow \mathbb{X}(\ker(\Phi)) \longrightarrow 0.$$

From (8) it follows that

(9)
$$\mathbb{X}(\ker(\Phi)) \cong \frac{\bigoplus_{i=1}^{r} \mathbb{X}(k[G/G_i])}{\mathbb{X}(k)} \cong \frac{\bigoplus_{i=1}^{r} k[G/G_i]}{ke^*}.$$

Vol. 116, 2000

- (b) Follows from (3), (4), Schanuel's Lemma for injective k[G]-modules and the Krull-Schmidt-Azumaya Theorem.
- (c) Set $T := \frac{\bigoplus_{i=1}^{r} k[G/G_i]}{ke^*}$. We have the k[G]-exact sequence

(10)
$$0 \longrightarrow T \longrightarrow k[G]^d \longrightarrow \operatorname{coker}(f) \longrightarrow 0.$$

From (a) and (10) we have the k[G]-exact sequence

(11)
$$0 \longrightarrow \mathbb{X}(\operatorname{coker}(f)) \longrightarrow k[G]^d \longrightarrow \ker(\Phi) \longrightarrow 0.$$

Since $k[G]^c$ is the projective k[G]-cover of ker (Φ) it follows that d = c. Since $(k[G]^c, \rho)$ is the injective k[G]-envelope of T we have that there exists a k[G]-exact sequence

(12)
$$0 \longrightarrow T \longrightarrow k[G]^c \longrightarrow \operatorname{coker}(\rho) \longrightarrow 0$$

where $\operatorname{coker}(\rho) \cong \Omega^{\#}(T) \oplus k[G]^{b}$ for some $b \ge 0$. From (12) we obtain

$$\frac{k[G]^c}{T} \cong \Omega^{\#}(T) \oplus k[G]^b.$$

Since

$$\mathcal{N}\left(\frac{k[G]^c}{T}\right) = 0$$

we have that b = 0 ([15], Proposition 1).

(d) From ([6], Lemma 3.8-iii) and (3) we have the k[G]-exact sequence

(13)
$$0 \to \mathbb{X}(\ker(\Phi)) \to \mathbb{X}(k[G]^{r-1+\tau_{\kappa}}) \to \mathbb{X}(\Omega_{L}^{s}(0)) \to 0.$$

From (9) and (13) we obtain the k[G]-exact sequence

(14)
$$0 \longrightarrow \frac{\bigoplus_{i=1}^{r} k[G/G_i]}{ke^*} \longrightarrow k[G]^{r-1+\tau_{\kappa}} \longrightarrow \mathbb{X}(\Omega_L^s(0)) \longrightarrow 0.$$

(e) From (4), (9) and Proposition 5, it follows that, as k[G]-modules,

$$\mathbb{X}(\Omega_L^s(0)) \cong k[G]^u \oplus \mathbb{X}(\Omega(\ker(\Phi))) \cong k[G]^u \oplus \Omega^{\#}\left(\frac{\bigoplus_{i=1}^r k[G/G_i]}{ke^*}\right). \quad \blacksquare$$

Let

$$T := \frac{\bigoplus_{i=1}^{r} k[G/G_i]}{ke^*} \cong \mathbb{X}(\ker(\Phi)).$$

We have

PROPOSITION 7: Let $k[G]^c$ be the injective k[G]-envelope of T. Then

$$c = \dim_k \left(T^G \right).$$

Proof: From (6) we obtain the k[G]-exact sequence

(15)
$$0 \longrightarrow T^{G} \longrightarrow \left(k[G]^{c}\right)^{G} \longrightarrow \left(\Omega^{\#}\left(T\right)\right)^{G}.$$

Therefore we obtain a k[G]-monomorphism $T^G \to k^c$. It follows that $c' := \dim_k (T^G) \leq \dim_k (k^c) = c$ and $T^G \cong k^{c'} \subseteq k[G]^{c'}$. Therefore there exists a k[G]-monomorphism $\rho: T^G \to k[G]^{c'}$. Since $k[G]^{c'}$ is an injective k[G]-module and the inclusion map $i: T^G \to T$ is a k[G]-monomorphism, it follows that there exists $\hat{\rho}: T \to k[G]^{c'}$ a k[G]-homomorphism such that $\rho = \hat{\rho} \circ i$. Suppose that ker $(\hat{\rho}) \neq 0$. Since k is a field of characteristic p, G a p-group and ker $(\hat{\rho})$ a k[G]-module we have $(\ker(\hat{\rho}))^G \neq 0$ ([10], Theorem 2). However $(\ker(\hat{\rho}))^G = T^G \cap \ker(\hat{\rho}) = \ker(\rho) = \{0\}$. Therefore $\hat{\rho}: T \to k[G]^{c'}$ is a k[G]-monomorphism. Since c is minimal it follows that $c \leq c'$. Hence c' = c.

If A is a G-module then $H^n(G, A)$ will denote the *n*-th cohomology group of G with coefficients in the module A.

PROPOSITION 8: Let G be a finite p-group, H_1, \ldots, H_r subgroups of G,

$$\mathcal{T}_r := \frac{\bigoplus_{i=1}^r k[G/H_i]}{ke^*}.$$

For each $i \in [\![1,r]\!]$, let $\widehat{H}_i := \langle gH_ig^{-1} \mid g \in G \rangle$ be the normal closure of the subgroup H_i in G. We set $\widehat{H} := \widehat{H}_1 \cdots \widehat{H}_r$ and let $d_{G/\widehat{H}}$ be the minimal number of generators of the group G/\widehat{H} . Then $\dim_k(T^G) = \dim_k(\mathcal{T}_r^G) = r - 1 + d_{G/\widehat{H}}$.

Proof: For each $i \in [1, r]$ we consider the maps $\alpha_i \colon ke_i^* \to k[G/H_i]$ with $\alpha_i(x) = \sum_{\sigma \in G/H_i} x\sigma$. Since G acts trivially on ke_i^* we have that $(ke^*)^G \cong ke^*$ and $H^1(G, ke_i^*) \cong \text{Hom}(G, k)$.

Let α_i^* be the application induced by α_i on the cohomology groups.

Let $r_i: k[G/H_i] \to k$ be the k-linear map sending the coset H_i to 1 and all other cosets of H_i to 0. Since $k[G/H_i]$ is the induced module $\operatorname{Ind}_{H_i}^G k$, it follows from Shapiro's Lemma that r_i together with restriction of operators from G to H_i induces an isomorphism $H^1(G, k[G/H_i]) \to H^1(H_i, k) \cong \operatorname{Hom}(H_i, k)$.

Therefore α_i^* is identified with the homomorphism Hom $(G, k) \to$ Hom (H_i, k) induced by restricting characters from G to H_i . Thus $\psi \in \ker(\alpha_i^*)$ if and only if ψ is trivial on the subgroup of G generated by the conjugates of H_i .

Thus, we have that $\psi \in \ker(\alpha_i^*) \iff \widehat{H}_i \leq \ker(\psi)$.

Let $\psi \in \ker(\alpha_i^*) \subseteq \operatorname{Hom}(G, k)$. There exists a unique $\widehat{\psi} \in \operatorname{Hom}(G/\widehat{H}_i, k)$ such that $\widehat{\psi}(g\widehat{H}_i) = \psi(g)$ for all $g \in G$. Then, we have the k[G]-isomorphism

(16)
$$\rho: \ker(\alpha_i^*) \to \operatorname{Hom}(G/\widehat{H}_i, k) \text{ such that } \psi \to \widehat{\psi}.$$

Let $\Phi(G/\widehat{H}_i)$ be the Frattini subgroup of G/\widehat{H}_i . Then

(17)
$$\dim_{k} \left(\ker \left(\alpha_{i}^{*} \right) \right) = \dim_{k} \left(\operatorname{Hom} \left(\frac{G}{\widehat{H}_{i}}, k \right) \right)$$
$$= \dim_{k} \left(\operatorname{Hom} \left(\frac{G/\widehat{H}_{i}}{\Phi \left(G/\widehat{H}_{i} \right)}, k \right) \right) = d_{G/\widehat{H}_{i}}.$$

Now we consider the k[G]-exact sequence,

(18)
$$0 \longrightarrow ke^* \xrightarrow{\alpha} \bigoplus_{i=1}^r k[G/H_i] \xrightarrow{\pi} \mathcal{T}_r \longrightarrow 0$$

where $\alpha((x, \ldots, x)) = (\alpha_1(x), \ldots, \alpha_r(x))$. From (18) we obtain

(19)
$$0 \longrightarrow (ke^*)^G \xrightarrow{\varphi_3} \left(\bigoplus_{i=1}^r k[G/H_i] \right)^G \xrightarrow{\varphi_2} \mathcal{T}_r^G \xrightarrow{\varphi_1} H^1(G, ke^*)$$
$$\xrightarrow{\alpha^*} \bigoplus_{i=1}^r H^1(G, k[G/H_i]) \longrightarrow H^1(G, \mathcal{T}_r) \longrightarrow \cdots.$$

Therefore from (19) we obtain the exact sequence

(20)
$$0 \longrightarrow ke^* \xrightarrow{\varphi_3} (ke^*)^r \xrightarrow{\varphi_2} \mathcal{T}_r^G \xrightarrow{\varphi_1} \operatorname{Hom}(G,k)$$
$$\xrightarrow{\alpha^*} \bigoplus_{i=1}^r H^1(G,k[G/H_i]) \longrightarrow H^1(G,\mathcal{T}_r) \longrightarrow \cdots$$

Hence, we obtain

(21)
$$0 \longrightarrow ke^* \xrightarrow{\varphi_3} (ke^*)^r \xrightarrow{\varphi_2} \mathcal{T}_r^G \xrightarrow{\varphi_1} \ker(\alpha^*) \longrightarrow 0.$$

It follows that $\dim_k (\ker (\varphi_1)) = r - 1$. Thus we have the k-exact sequence

(22)
$$0 \longrightarrow (ke^*)^{r-1} \longrightarrow \mathcal{T}_r^G \longrightarrow \ker(\alpha^*) \longrightarrow 0.$$

Since $\alpha^*(\psi) = (\alpha_1^*(\psi), \dots, \alpha_r^*(\psi))$, we have that

$$\begin{array}{lll} \psi \in \ker\left(\alpha^{*}\right) & \Longleftrightarrow & \psi \in \ker\left(\alpha^{*}_{i}\right) \; \forall \; i \in \llbracket 1, r \rrbracket, \\ & \Longleftrightarrow & \widehat{H_{i}} \leq \ker\left(\psi\right) \; \forall \; i \in \llbracket 1, r \rrbracket, \\ & \Leftrightarrow & \widehat{H} = \widehat{H_{1}} \cdots \widehat{H_{r}} \leq \ker\left(\psi\right). \end{array}$$

Hence, we have ker $(\alpha^*) \cong \operatorname{Hom}(G/\widehat{H}, k)$ and $\dim_k (\ker (\alpha^*)) = d_{G/\widehat{H}}$. Finally, from (22), we obtain $\dim_k (\mathcal{T}_r^G) = r - 1 + d_{G/\widehat{H}}$.

PROPOSITION 9: Let L/K be a finite Galois p-extension of algebraic function fields of one variable with an algebraically closed field k of characteristic p as its exact field of constants with Galois group G = Gal(L/K). Let H_1, \ldots, H_r be arbitrary subgroups of G. Reordering the indices and taking conjugates if necessary, let $1 \leq i_1 < i_2 < \cdots < i_{s-1} < i_s = r$ be such that

and such that the subgroups $H_{i_1}, H_{i_2}, \ldots, H_{i_s}$ satisfy the condition that if for $1 \leq j, k \leq s$ there exists some $g \in G$ such that $H_{i_j}^g = gH_{i_j}g^{-1} \subseteq H_{i_k}$, then j = k. Let $A_2 := \{i_1, i_2, \ldots, i_s\}$ and $A_1 := [1, r] - A_2$. Then

$$\frac{\bigoplus_{i=1}^r k[G/H_i]}{ke^*} \cong \bigoplus_{i \in A_1} k[G/H_i] \oplus \frac{\bigoplus_{i \in A_2} k[G/H_i]}{ke^*_{A_2}},$$

where

$$ke_{A_2}^* := \left\{ \left(\sum_{\sigma \in G/H_{i_1}} x\sigma, \dots, \sum_{\sigma \in G/H_{i_s}} x\sigma \right) \in \bigoplus_{i \in A_2} k[G/H_i] : x \in k \right\}.$$

Proof: For each $j \in [1, s]$ we define the k[G]-monomorphism,

$$\begin{array}{rcl} \Lambda_{\widehat{\imath_j}} \colon & k[G/H_{i_j}] & \to & k[G/H_{\widehat{\imath_j}}] \\ & \sum\limits_{\psi \in G/H_{i_j}} a_{\psi}\psi & \to & \sum\limits_{\psi \in G/H_{i_j}} a_{\psi} & \sum\limits_{\sigma \subseteq \psi} \sigma, \\ & & \sigma \in G/H_{i_j} \end{array}$$

where $\hat{i}_{j} \in [\![i_{j-1} + 1, i_{j} - 1]\!]$, $i_{0} = 0$. We define the following k[G]-homomorphism

$$\Lambda: \bigoplus_{i=1}^{r} k[G/H_i] \to \frac{\bigoplus_{i=1}^{r} k[G/H_i]}{ke^*} \text{ by } (\xi_1, \cdots, \xi_{i_j}, \cdots, \xi_r) \to \overline{(c_1, \ldots, c_{r-1}, c_r)},$$

where

$$c_t = \begin{cases} \xi_t + \Lambda_t \left(\xi_{i_j} \right) & \text{if } t \in \llbracket i_{j-1} + 1, i_j - 1 \rrbracket \\ \xi_{i_j} & \text{if } t = i_j. \end{cases}$$

Vol. 116, 2000

A is a k[G]-epimorphism with ker $(\Lambda) = D \subseteq \bigoplus_{i=1}^{r} k[G/H_i]$ where

$$D := \left\{ \left(0, \dots, 0, \sum_{\psi \in G/H_{i_1}} x\psi, 0, \dots, 0, \sum_{\psi \in G/H_{i_2}} x\psi, 0, \dots, 0, \sum_{\psi \in G/H_{i_3}} x\psi\right) : x \in k \right\}.$$

Professor Alfred Weiss proved that the F[G]-module $\frac{F[S]}{FS}$ is an indecomposable F[G]-module, where F is an arbitrary field of characteristic p, G a finite p-group and $S := \biguplus_{i=1}^r G/H_i$ with H_i arbitrary subgroups of G satisfying that $H_i^g = gH_ig^{-1} \subseteq H_j$ for some $g \in G \iff i = j$.

PROPOSITION 10 (Weiss): Let G be a finite p-group, F a field of characteristic p, S a finite set, such that G acts on S, H a subgroup of G acting by restriction on S and B an F[G]-module. Then

- (a) The set $\mathbf{S} := \{\widehat{X} : X \text{ is a } H \text{-orbit in } S\}$ is an F-base of the module $(F[S])^H$ and $\overline{\mathbf{S}} := \{\widehat{X} + F\widehat{S} : X \text{ is a } H \text{-orbit in } S\}$ is an F-generator of the module $\frac{(F[S])^H}{F\widehat{S}}$.
- (b) We consider the homomorphism of F-algebras

$$\begin{split} \psi \colon & \operatorname{End}_{F[G]}(B) \to & \operatorname{End}_F\left(\frac{B}{I_G B}\right) \\ & f \to & \widehat{f}. \end{split}$$

Let $A := \psi (\operatorname{End}_{F[G]}(B))$. Then

$$\frac{A}{\operatorname{rad}(A)} \cong \frac{\operatorname{End}_{F[G]}(B)}{\operatorname{rad}\left(\operatorname{End}_{F[G]}(B)\right)}$$

where rad(A) denotes the Jacobson radical of A.

(c) Let $B := \frac{F[S]}{FS}$. Then B is an indecomposable F[G]-module if and only if A is a local ring.

Proof:

- (a) It is clear.
- (b) Since G is a finite p-group and F is a field of characteristic p we have that I_G is a nilpotent ideal ([9], Lemma 2.21). Therefore there exists $s \in \mathbb{N}$ such that $I_G^s = (0)$. We have that ker $(\psi) = \{f \in \operatorname{End}_{F[G]}(B) : f(B) \subseteq I_G B\}$ is a nilpotent ideal. Then ker $(\psi) \subseteq \operatorname{rad}(\operatorname{End}_{F[G]}(B))$. It follows from ([3],

Proposition 5.1) that

$$\operatorname{rad}\left(\frac{\operatorname{End}_{F[G]}(B)}{\operatorname{ker}(\psi)}\right)\cong \frac{\operatorname{rad}\left(\operatorname{End}_{F[G]}(B)\right)}{\operatorname{ker}(\psi)}.$$

Since ψ : End_{F[G]}(B) \rightarrow A is an epimorphism we have that

$$\frac{\operatorname{End}_{F[G]}(B)}{\ker(\psi)} \cong A$$

Hence

$$\frac{\frac{\operatorname{End}_{F[G]}(B)}{\operatorname{ker}(\psi)}}{\operatorname{rad}\left(\frac{\operatorname{End}_{F[G]}(B)}{\operatorname{ker}(\psi)}\right)} \cong \frac{\operatorname{End}_{F[G]}(B)}{\operatorname{rad}\left(\operatorname{End}_{F[G]}(B)\right)} \cong \frac{A}{\operatorname{rad}(A)}$$

(c) We have that B is a finitely generated F[G]-module. From ([3], Proposition 6.10) we obtain that B is an indecomposable F[G]-module if and only if $\operatorname{End}_{F[G]}(B)$ is a local ring and that $\operatorname{End}_{F[G]}(B)$ is a local ring if and only if

$$\frac{\operatorname{End}_{F[G]}(B)}{\operatorname{rad}\left(\operatorname{End}_{F[G]}(B)\right)} \cong \frac{A}{\operatorname{rad}\left(A\right)}$$

is a division ring. From ([3], Proposition 5.21) we have that $\frac{A}{\operatorname{rad}(A)}$ is a division ring if and only if A is a local ring.

Let G be a finite p-group, H a subgroup of G such that G acts on a finite set S and X an H-orbit over S. We say that X is a Weiss H-orbit over S if X contains some $s \in S$ such that the stabilizer G_s satisfies $G_s \leq H$.

Let X be an H-orbit over S and let $s \in S$. If $G_s = H_s$, then $G_s \subseteq H$ and X is a Weiss H-orbit over S. Conversely, if X is a Weiss H-orbit over S then there exists $t \in S$ such that $G_t \subseteq H$. It follows that if $g \in G_t$, then $g \in H$ and gt = t. Therefore $G_t \subseteq H_t$ so that $G_t = H_t$. Therefore X is a Weiss H-orbit over S if and only if $G_s = H_s$ for some $s \in X$ if and only if $G_s \subseteq H$ for some $s \in X$.

Let F be a field of characteristic p and H a subgroup of G. If X is a left transversal of H in G and M is an F[G]-module, we consider the map $\operatorname{Tr}_{G/H}: M^H \to M^G$ defined by $\operatorname{Tr}_{G/H}(m) = \sum_{g_i \in X} g_i m$.

PROPOSITION 11 (Weiss): Let G be a finite p-group, F a field of characteristic p, S a finite set such that G acts on S, H a subgroup of G acting by restriction on S. Then $\mathcal{B} := \{ \operatorname{Tr}_{G/H}(\hat{X}) : X \text{ is a Weiss H-orbit} \}$ is an F-base of the module $\operatorname{Tr}_{G/H}(F[S]^H)$.

Proof: We consider $\varepsilon \in \operatorname{Tr}_{G/H}(F[S]^H)$. Then

$$\varepsilon = \operatorname{Tr}_{G/H}\left(\sum_{i=1}^{t} r_i \widehat{X}_i\right) = \sum_{i=1}^{t} r_i \operatorname{Tr}_{G/H}(\widehat{X}_i)$$

where $r_i \in F$ and X_i , $i \in [\![1,t]\!]$ are the *H*-orbits over *S*. Let $s \in S$ and let X_i be an *H*-orbit over *S* such that $s \in X_i$. We have that if $H = \biguplus_{i=1}^{[H:H_s]} h_i H_s$ then the *H*-orbit X_i is given by $X_i = \{h_i s: i \in [\![1, [H:H_s]]\!]\}$. From ([6], Lemma 8.3), we obtain

$$\begin{aligned} \operatorname{Tr}_{G/H}(\widehat{X_i}) &= \operatorname{Tr}_{G/H} \operatorname{Tr}_{H/H_s}(s) = \operatorname{Tr}_{G/H_s}(s) = \operatorname{Tr}_{G/G_s} \operatorname{Tr}_{G_s/H_s}(s) \\ &= \operatorname{Tr}_{G/G_s}\left([G_s:H_s]s\right) = [G_s:H_s] \operatorname{Tr}_{G/G_s}(s) = \begin{cases} \widehat{\mathcal{Q}}_s & \text{if } G_s = H_s, \\ 0 & \text{otherwise,} \end{cases} \end{aligned}$$

where \widehat{Q}_s is the *G*-orbit over *S* containing *s*. Therefore

$$\varepsilon = \sum_{i=1}^{t} r_i \left[G_s : H_s \right] \operatorname{Tr}_{G/G_s} \left(s \right) = \sum_{i=1}^{n} r_i \operatorname{Tr}_{G/H} (\widehat{X}_i)$$

where the X_i 's are Weiss *H*-orbits over *S*. Furthermore, we have that \mathcal{B} is an *F*-linearly independent set. Hence \mathcal{B} is an *F*-base of $\operatorname{Tr}_{G/H}(F[S]^H)$.

PROPOSITION 12 (Weiss): Let G be a finite p-group, F a field of characteristic p and H_1, \ldots, H_r subgroups of G satisfying:

(23)
$$H_i^g = gH_ig^{-1} \subseteq H_j \text{ for some } g \in G \iff i = j$$

and such that G acts in a natural way on the set $S := \bigcup_{i=1}^{r} G/H_i$. Then

$$B := \frac{F[S]}{F\widehat{S}}$$

is an indecomposable F[G]-module.

Proof: Let $A := \{\widehat{f}: f \in \operatorname{End}_{F[G]}(B)\}$, where

$$\widehat{f} \in \operatorname{End}_F\left(rac{B}{I_GB}
ight)$$
 and $\widehat{f}(x+I_GB) = f(x) + I_GB.$

From Proposition 10 it follows that in order to prove the F[G]-indecomposability of the module B it suffices to prove that A is a local ring.

Let $v_j := \pi(H_j + F\widehat{S}), j \in \llbracket 1, r \rrbracket$ where

$$\pi: B \to \frac{B}{I_G B}$$

is the canonical projection. We define the set $V := \{v_j : j \in [\![1, r]\!]\}$. If $g \in G$ we have that $(g-1)(H_j + F\widehat{S}) \in I_G B$. Therefore

$$\pi(gH_j + F\widehat{S}) = \pi(H_j + F\widehat{S}) = v_j \quad \forall g \in G \quad \forall j \in \llbracket 1, r \rrbracket.$$

We have that V is an F-generator set of the module $\frac{B}{I_G B}$. Now, if $x \in F\widehat{S}$ then

$$x = \sum_{j=1}^{r} \sum_{g_{j} \in T(G/H_{j})} (bg_{j} - b)H_{j} \in I_{G}F[S],$$

where $T(G/H_j)$ is a left transversal of H_j in G. Therefore $F\widehat{S} \subseteq I_G F[S]$. The application

$$\rho: \quad I_G F[S] \quad \to \qquad I_G \left(\frac{F[S]}{F\widehat{S}}\right)$$
$$\sum_{i=1}^n x_i y_i \quad \to \quad \sum_{i=1}^n x_i \left(y_i + F\widehat{S}\right),$$

where $x_i \in I_G$, $y_i \in F[S]$ is an F[G]-epimorphism and $\ker(\rho) \cong F\widehat{S}$. If $x \in F\widehat{S}$ then

$$x = \sum_{j=1}^{'} \sum_{g_j \in T(G/H_j)} (bg_j - b)H_j.$$

Therefore $\rho(x) = 0$. Hence $F\widehat{S} \subseteq \ker(\rho)$. Conversely, if $x \in \ker(\rho)$ then

$$\rho(x) = \rho\left(\sum_{i=1}^{n} x_i y_i\right) = \sum_{i=1}^{n} x_i (y_i + F\widehat{S}) = F\widehat{S} = 0.$$

It follows that $\sum_{i=1}^{n} x_i y_i + F\widehat{S} = F\widehat{S}$. Therefore $\sum_{i=1}^{n} x_i y_i = x \in F\widehat{S}$. Hence $\ker(\rho) \cong F\widehat{S}$. Then

$$I_G B \cong \frac{I_G F[S]}{F\widehat{S}}.$$

We consider now an element $x \in I_G F[S]$. We have that $x = \sum_{i=1}^n x_i y_i$ for some $x_i \in I_G$, $y_i \in F[S]$. Hence

(24)
$$x_i y_i = \left(\sum_{g \in G} r_g g\right) \left(\sum_{j=1}^n \sum_{\sigma_j \in G/H_j} a_{\sigma_j} \sigma_j\right) = \sum_{j=1}^n \sum_{\sigma_j \in G/H_j} \sum_{g \in G} \left(r_g a_{\sigma_j}\right) \sigma_j$$

Therefore, for each $\sigma_j \in G/H_j$ and for each $j \in [\![1,r]\!]$ the coefficients of the summand $\sum_{g \in G} (r_g a_{\sigma_j} g) \sigma_j$ satisfy $\sum_{g \in G} r_g a_{\sigma_j} = (\sum_{g \in G} r_g) a_{\sigma_j} = 0$. Now, let $a_1v_1 + \cdots + a_rv_r = 0$ be any linear *F*-combination of the v_i equal to zero. Therefore

$$(a_1H_1 + \dots + a_rH_r) + F\widehat{S} \in I_GB \cong \frac{I_GF[S]}{F\widehat{S}}$$

From (24) it follows that $a_i = 0 \ \forall i \in [\![1, r]\!]$. Therefore V is an F-base of $\frac{B}{I_G B}$. Hence \hat{f} is completely determined by its values on the v_j and

$$\widehat{f}(v_j) = f\left(H_j + F\widehat{S}\right) + I_G B.$$

Let $x_j \in F[S]$ be such that $f(H_j + F\widehat{S}) = x_j + F\widehat{S}$. Since $f \in \operatorname{End}_{F[G]}(B)$ it follows that for every $g \in G$, $gx_j + F\widehat{S} = gf(H_j + F\widehat{S}) = f(gH_j + F\widehat{S})$. Therefore, if $g \in H_j$ we have that $f(gH_j + F\widehat{S}) = f(H_j + F\widehat{S}) = x_j + F\widehat{S}$. Hence

$$f(H_j + F\widehat{S}) \in \frac{F[S]^{H_j}}{F\widehat{S}}.$$

The module $\frac{F[S]^{H_j}}{FS}$ is an *F*-module generated by the set

$$\left\{\widehat{X} + F\widehat{S}: X \text{ is a } H_j \text{-orbit over } S\right\}$$

Therefore

(25)
$$f(H_j + F\widehat{S}) = \sum_{X \in S/H_j} a_j(X)(\widehat{X} + F\widehat{S}) = \left(\sum_{X \in S/H_j} a_j(X)\widehat{X}\right) + F\widehat{S},$$

where $a_j(X) \in F$ and S/H_j represents the set of H_j -orbits over S. Since $F\widehat{S} = \widehat{S} + F\widehat{S}$ we have that

$$F\widehat{S} = \sum_{j=1}^{r} \operatorname{Tr}_{G/H_j}(f(H_j + F\widehat{S})) = \sum_{j=1}^{r} \sum_{X \in S/H_j} a_j(X) \operatorname{Tr}_{G/H_j}(\widehat{X}) + F\widehat{S}.$$

If X is not a Weiss *H*-orbit, from Proposition 11 we obtain that $\operatorname{Tr}_{G/H_j}(\widehat{X}) = 0$. Therefore

(26)
$$\sum_{j=1}^{r} \sum_{X \in S/H_j} a_j(X) \operatorname{Tr}_{G/H_j}(\widehat{X}) + F\widehat{S} = \sum_{j=1}^{r} \sum_{X \in W} a_j(X) \operatorname{Tr}_{G/H_j}(\widehat{X}) + F\widehat{S},$$

where W is the set of Weiss H_j -orbits over S. Since X is an H_j -orbit over S, we have that $X = \{gg'H_i: g \in H_j\}$ for some $i \in [\![1, r]\!]$. Since X is a Weiss H-orbit over S, it follows that there exists some $xg'H_i \in X$ such that $G_{xg'H_j} \subseteq H_j$. We have that $G_{xg'H_i} = H_i^{xg'}$. Therefore $H_i^{xg'} \subseteq H_j$. From Proposition 12 we have that i = j. Therefore $xg'H_jg'^{-1}x^{-1} \subseteq H_j$. Since $|g'H_jg'^{-1}| = |H_j|$, it follows that $g'H_jg'^{-1} = H_j$. Therefore $g' \in N_G(H_j)$. We have that

$$X = \{gg'H_j : g \in H_j\} = \{gH_jg' : g \in H_j\} = \{g'H_j\}.$$

Hence

$$F\widehat{S} = \sum_{j=1}^{r} \sum_{X \in W} a_j(X) \operatorname{Tr}_{G/H_j}(\widehat{X}) + F\widehat{S}$$
$$= \sum_{j=1}^{r} \sum_{g' \in N_G(H_j)} a_j \left(\{g'H_j\}\right) \operatorname{Tr}_{G/H_j}(g'H_j) + F\widehat{S}.$$

Then $\sum_{j=1}^{r} \sum_{g' \in N_G(H_j)} a_j(\{g'H_j\}) \operatorname{Tr}_{G/H_j}(g'H_j) \in F\widehat{S}$. Since $\operatorname{Tr}_{G/H_j}(g'H_j) = \sum_{z \in G/H_j} zH_j$, it follows that

$$\sum_{j=1}^{r} \sum_{g' \in N_G(H_j)} a_j(\{g'H_j\}) \operatorname{Tr}_{G/H_j}(g'H_j) = \sum_{j=1}^{r} \sum_{z \in G/H_j} \sum_{g' \in N_G(H_j)} a_j(\{g'H_j\}) zH_j.$$

Therefore, the element $\sum_{j=1}^{r} \sum_{z \in G/H_j} \sum_{g' \in N_G(H_j)} a_j(\{g'H_j\}) zH_j$ belongs to $F\widehat{S}$.

We obtain that the element $\sum_{g' \in N_G(H_j)} a_j(\{g'H_j\})$ is independent of j. We set

$$a(f) := \sum_{g' \in N_G(H_j)} a_j(\{g'H_j\}) \in F.$$

From (25) it follows that

$$\widehat{f}(v_j) = \pi \left(\sum_{X \in W} a_j(X)(\widehat{X} + F\widehat{S})\right) = \sum_{g' \in N_G(H_j)} a_j(\{g'H_j\})\pi(H_j + F\widehat{S}) = a(f)v_j.$$

Hence $\widehat{f}(v_j) = a(f)v_j$. That is, \widehat{f} is the multiplication by a(f). Therefore $A \cong F$.

PROPOSITION 13: With the conditions and notations of Propositions 8 and 9, let $H_i = G_i$. Let

$$M: = \frac{\bigoplus_{i \in A_2} k[G/G_i]}{ke_{A_2}^*}$$

Then, as k[G]-modules,

$$W := \Omega^{\#}(M) \cong \frac{k[G]^{|A_2|-1+d_{G/\widehat{H}}}}{M}$$

and W is an indecomposable k[G]-module. Furthermore, as k-module we have that $W \cong k^a$ where

$$a = |G|d_{G/\widehat{H}} + \sum_{i \in A_2} \left(|G| - \frac{|G|}{|G_i|}\right) + 1 - |G|.$$

Proof: From Propositions 1, 9 and 12 we have that M is an indecomposable k[G]module. We have that any injective k[G]-component N of M satisfies $N \cong k[G]^b$ for some $b \in \mathbb{N}_0$. Since $\mathcal{N}(M) = 0$ it follows that b = 0 ([15], Proposition 1). Therefore $M \cong M^{(1)}$. From Proposition 2-(c) we have that $\Omega^{\#}(M)$ is an indecomposable k[G]-module. Vol. 116, 2000

The k[G]-sequence

(27)
$$0 \longrightarrow M \longrightarrow k[G]^{|A_2|-1+d_{G/\widehat{H}}} \longrightarrow \Omega^{\#}(M) \longrightarrow 0$$

is exact (Proposition 6-(c)). The result follows.

THEOREM 1: Let L/K be a finite Galois p-extension of algebraic function fields of one variable with Galois group $G = \operatorname{Gal}(L/K)$ and field of constants an algebraically closed field k of characteristic p. Let $\Omega_L^s(0)$ be the k[G]-module of the semisimple holomorphic differentials of L. Let P_1, \ldots, P_r be the ramified primes in L/K and let G_1, \ldots, G_r be their decomposition groups respectively. For each $i \in [\![1,r]\!]$ we define $\widehat{G_i} := \langle gG_ig^{-1} \mid g \in G \rangle$ the normal closure of the subgroup G_i in G, $\widehat{H} := \widehat{G_1} \cdots \widehat{G_r}$ and $d_{G/\widehat{H}}$ the minimal number of generators of the group G/\widehat{H} . Reordering the indices and taking conjugates if necessary, let $1 \leq i_1 < i_2 < \cdots < i_{s-1} < i_s = r$ be such that

and such that satisfy the condition: If for $1 \leq j,k \leq s$, there exists some $g \in G$ such that $G_{i_j}^g = gG_{i_j}g^{-1} \subseteq G_{i_k}$, then j = k. Let $A_2 := \{i_1, i_2, \ldots, i_s\}$ and $A_1 := [\![1,r]\!] - A_2$. Then the modular decomposition in terms of indecomposable k[G]-modules of $\Omega_L^s(0)$ is given by

$$\Omega_L^s(0) \cong k[G]^{\tau_K - d_{G/\widehat{H}}} \oplus \bigoplus_{i \in A_1} I_{G,G_i} \oplus \Omega(\ker(\Phi_0)),$$

where

$$I_{G,G_i} = \bigg\{ \sum_{g \in G} a_g g \in k[G] \colon \sum_{g \in \sigma} a_g = 0 \ \forall \sigma \in G/G_i \bigg\},$$

 Φ_0 is the restriction of Φ on the module $\bigoplus_{i \in A_2} k[G/G_i]$, where Φ is as in (3). We have that

$$\ker(\Phi_0) = \left\{ \left(\sum_{\sigma \in G/G_{i_1}} a_{\sigma}\sigma, \dots, \sum_{\sigma \in G/G_{i_s}} a_{\sigma}\sigma \right) : \sum_{i \in A_2} \sum_{\sigma \in G/G_i} a_{\sigma} = 0 \right\},$$
$$\Omega(\ker(\Phi_0)) \cong \Omega(\mathbb{X}(M)), \quad \text{where } M = \frac{\bigoplus_{i \in A_2} k[G/G_i]}{ke_{A_2}^*},$$

$$ke_{A_2}^* = \left\{ \left(\sum_{\sigma \in G/G_{i_1}} x\sigma, \dots, \sum_{\sigma \in G/G_{i_s}} x\sigma \right) \in \bigoplus_{i \in A_2} k[G/G_i] : x \in k \right\}.$$

The indecomposable k[G]-module

$$W := \Omega(\ker(\Phi_0)) \cong rac{k[G]^{|A_2|-1+d_{G/\widehat{H}}}}{M}$$

satisfies $W \cong k^a$ as k-module, where

$$a = |G|d_{G/\widehat{H}} + \sum_{i \in A_2} \left(|G| - \frac{|G|}{|G_i|} \right) + 1 - |G|.$$

Proof: From Proposition 6-(e) we have that as k[G]-modules

$$\mathbb{X}(\Omega_L^s(0)) \cong k[G]^u \oplus \Omega^{\#} \Big(\frac{\bigoplus_{i=1}^r k[G/G_i]}{ke^*} \Big)$$

for some $u \ge 0$. From Propositions 2-(d), 6, 7, 8 and 9 we obtain

(28)
$$\mathbb{X}(\Omega_L^s(0)) \cong k[G]^{\tau_K - d_{G/\widehat{H}}} \oplus \bigoplus_{i \in A_1} \frac{k[G]}{k[G/G_i]} \oplus \Omega^{\#}(M)$$

Therefore

$$\mathbb{X}(\mathbb{X}(\Omega_L^s(0))) \cong \mathbb{X}(k[G]^{\tau_{\mathcal{K}} - d_{G/\widehat{H}}}) \oplus \mathbb{X}\left(\bigoplus_{i \in A_1} \frac{k[G]}{k[G/G_i]}\right) \oplus \mathbb{X}(\Omega^{\#}(M)).$$

From the argument used to prove Proposition 6-(a) it follows that $\mathbb{X}(\ker(\Phi_0)) \cong M$. Therefore, from Proposition 5 and ([6], Lemma 3.5) we have that as k[G]-modules

(29)
$$\mathbb{X}(\Omega^{\#}(M)) \cong \mathbb{X}(\Omega^{\#}(\mathbb{X}(\ker(\Phi_0)))) \cong \mathbb{X}(\mathbb{X}(\Omega(\ker(\Phi_0)))) \cong \Omega(\ker(\Phi_0)).$$

From Propositions 2-(d), 5 we have that

$$\mathbb{X}\left(rac{k[G]}{k[G/G_i]}
ight)\cong \Omega\left(\mathbb{X}(k[G/G_i])
ight)\cong \Omega(k[G/G_i]).$$

From [16] and [17] we have that $I_{G,G_i} \cong \Omega(k[G/G_i])$ and that I_{G,G_i} is an indecomposable k[G]-module.

From ([6], Corollary 3.4, Lemmas 3.5, 3.6), (28) and (29) we obtain that

$$\Omega_L^s(0) \cong k[G]^{\tau_K - d_{G/\widehat{H}}} \oplus \bigoplus_{i \in A_1} I_{G,G_i} \oplus \Omega(\ker(\Phi_0)).$$

Finally, from Propositions 1, 12, 13 and ([6], Lemma 3.5) we have that the k[G]-module $\mathbb{X}(\Omega^{\#}(M)) \cong \Omega(\ker(\Phi_0))$ is an indecomposable k[G]-module.

References

- F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Graduate Texts in Mathematics 13, Springer-Verlag, Berlin-Heidelberg-New York, 1974.
- [2] C. Chevalley, Introduction to the Theory of Algebraic Functions of One Variable, Mathematical Surveys No. 6, American Mathematical Society, 1951.
- [3] C. W. Curtis and I. Reiner, Methods of Representation Theory with Applications to Finite Groups and Orders, Pure and Applied Mathematics, Wiley-Interscience, New York, Vol. I, 1981; Vol. II, 1987.
- [4] K. Iwasawa, Algebraic Functions, Translations of Mathematical Monographs, Vol. 118, American Mathematical Society, 1993.
- G. Karpilovsky, Group Representations, North-Holland Mathematics Studies, 175 Vol. I, North-Holland, Amsterdam–London–New York–Tokyo, 1992.
- [6] G. Karpilovsky, Group Representations, North-Holland Mathematics Studies, 175 Vol. II, North-Holland, Amsterdam-London-New York-Tokyo, 1992.
- [7] G. Karpilovsky, Topics in Field Theory, North-Holland Mathematics Studies, 155, North-Holland, Amsterdam, 1992.
- [8] S. Nakajima, Equivariant form of the Deuring-Šafarevič formula for Hasse-Witt invariants, Mathematische Zeitschrift 190 (1985), 559-566.
- [9] Sudarshan K. Sehgal, Topics in Group Rings, Pure and Applied Mathematics, Vol. 50, Marcel Dekker, New York, 1978.
- [10] J.-P. Serre, Local Fields, Graduate Texts in Mathematics 67, Springer-Verlag, New York, 1979.
- [11] J.-P. Serre, Sur la topologie des variétés algébriques en caractéristique p, Symposium Internacional de Topología Algebraica, Universidad Autónoma de México y UNESCO, 1956, pp. 24–53.
- [12] D. Subrao, The p-rank of Artin-Schreier curves, Manuscripta Mathematica 16 (1975), 169–193.
- [13] J. Tate, Genus change in inseparable extensions of function fields, Proceedings of the American Mathematical Society 3 (1951), 400–406.
- [14] R. Valentini, Some p-adic Galois representations for curves in characteristic p, Mathematische Zeitschrift 192 (1986), 541–545.
- [15] R. Valentini, Representations of automorphisms on differentials of function fields of characteristic p, Journal f
 ür die Reine und Angewandte Mathematik 335 (1982), 164–179.
- [16] G. Villa and M. Madan, Structure of semisimple differentials and p-class groups in Z_p-extensions, Manuscripta Mathematica 57 (1987), 315–350.
- [17] G. Villa and M. Madan, Integral representations of p-class groups in \mathbb{Z}_p -extensions, semisimple differentials and Jacobians, Archiv der Mathematik 56 (1991), 254–269.